

La tabla de enrutamiento: Un estudio detallado

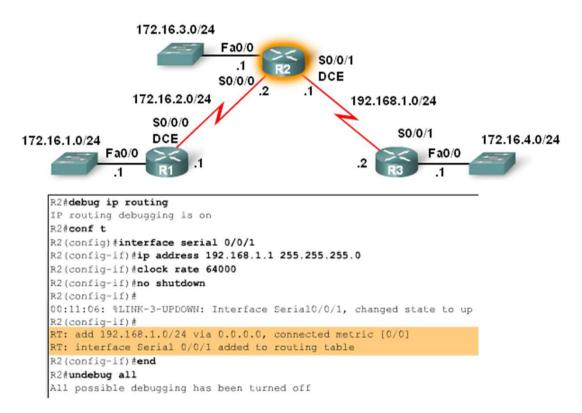
Jean Polo Cequeda Olago

Conceptos y protocolos de enrutamiento. Capítulo 8

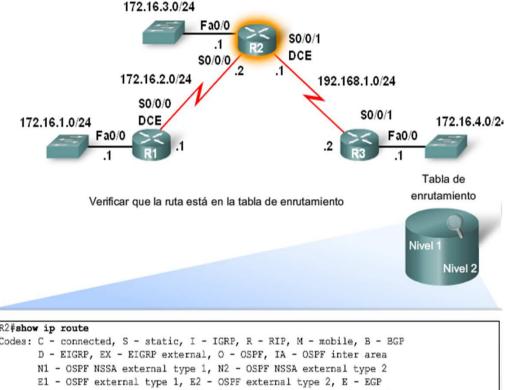
Cisco Networking Academy® Mind Wide Open®

Objetivos

- Describir los diferentes <u>tipos de rutas</u> de la estructura de las tablas de enrutamiento.
- Describir el <u>proceso de búsqueda</u> de las tablas de enrutamiento.
- Describir el <u>funcionamiento del enrutamiento</u> en redes enrutadas.


- Las entradas de la tabla de enrutamiento vienen de los siguientes orígenes:
 - Redes conectadas directamente
 - Rutas estáticas
 - Protocolos de enrutamiento dinámico

```
Router#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile,
<output omitted>


Gateway of last resort is not set

172.16.0.0/24 is subnetted, 4 subnets
S 172.16.4.0 is directly connected, Serial0/0/1
R 172.16.1.0 [120/1] via 172.16.2.1, 00:00:08, Serial0/0/0
C 172.16.2.0 is directly connected, Serial0/0/0
C 172.16.3.0 is directly connected, FastEthernet0/0
10.0.0.0/16 is subnetted, 1 subnets
S 10.1.0.0 is directly connected, Serial0/0/1
C 192.168.1.0/24 is directly connected, Serial0/0/1
S 192.168.100.0/24 is directly connected, Serial0/0/1
Router#
```

- Rutas de nivel 1
- La ruta se agrega a la tabla de enrutamiento tan pronto como se emite el comando no shutdown

- La tabla de enrutamiento IP de Cisco es una estructura jerárquica
 - El motivo de esto es acelerar el proceso de búsqueda

R2#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is not set

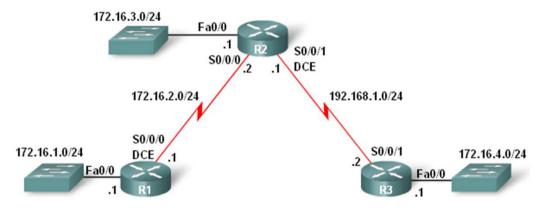
C 192.168.1.0/24 is directly connected, Serial0/0/1

- Rutas de nivel 1
 - Tienen una máscara de subred igual o menor que la máscara classful de la dirección de red
- La ruta de nivel 1 puede funcionar como:
 - Ruta por defecto
 - Ruta de superred
 - Ruta de red

- Rutas de nivel 1
 - Ruta final
 - Incluye:
 - Una dirección del siguiente salto

0

- Una interfaz de salida


Tabla de enrutamiento: Rutas de nivel 1

C 192.168.1.0/24 is directly connected, Serial0/0/1

- Rutas primarias y secundarias
 - Una ruta principal es una ruta de nivel 1
 - Una ruta principal no contiene ninguna dirección IP del siguiente salto ni información sobre la interfaz de salida

Rutas principal y secundaria

Rutas principal y secundaria

```
R2(config) #interface fastethernet 0/0
R2(config-if) #ip address 172.16.3.1 255.255.0
R2(config-if) #no shutdown
R2(config-if) #end
R2#show ip route
Codes: C - connected, S - static, I - IGRF, R - RIP, M - mobile,
<text omitted>

Gateway of last resort is not set

172.16.0.0/24 is subnetted, 1 subnets
C 172.16.3.0 is directly connected, FastEthernet0/0
C 192.168.1.0/24 is directly connected, Serial0/0/1
R2#

Ruta principal de nivel 1
```


- Creación automática de rutas primarias
 - Se produce siempre que se agrega una subred a la tabla de enrutamiento
- Rutas secundarias
 - Las rutas secundarias son rutas de nivel 2
 - Las rutas secundarias son **subredes** de una dirección de red classful

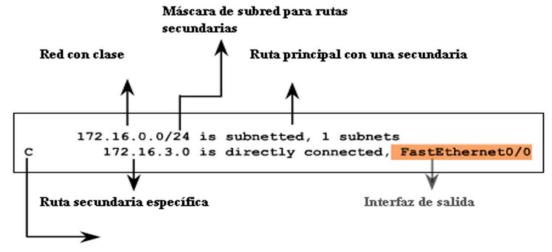

172.16.0.0/24 is subnetted, 1 subnets 172.16.3.0 is directly connected, FastEthernet0/0 Próxima dirección IP de Rutas de nivel 1 Rutas de nivel 2 siguiente salto y/o interfaz de salida Ruta final Ruta/Interfaz Por defecto Ruta final Ruta/Interfaz Superred Ruta final Ruta/Interfaz Red Ruta principal Ruta secundaria Ruta final Red Subred Ruta/Interfaz 172.16.0.0 172.16.3.0 FastEthernet0/0

Tabla de enrutamiento: Relación principal/secundaria

- Las rutas secundarias de nivel 2 contienen la ruta de origen y la dirección de red de la ruta
- Las rutas secundarias de nivel 2 también son consideradas rutas finales

Motivo: contienen la dirección del siguiente salto y/o la interfaz de salida

Detalles de ruta principal y secundaria

- Las dos rutas secundarias tienen la misma máscara de subred
 - Esto significa que la ruta principal mantiene la ruta /24

Tabla de enrutamiento: Relación principal/secundaria

Ruta secundaria

Subred

172.16.2.0

Subred

172.16.3.0

Ruta primaria

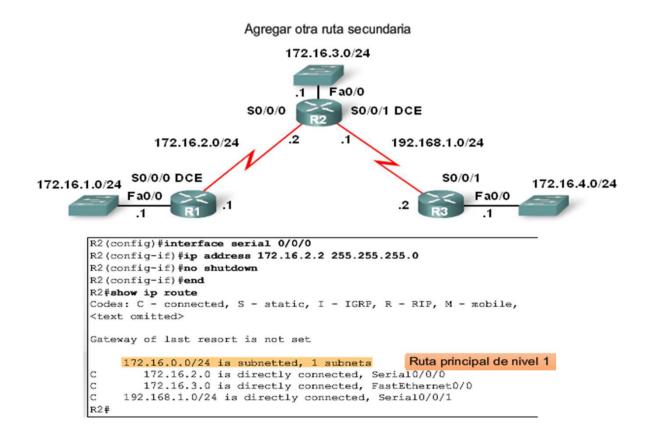
Red

172.16.0.0

Ruta/Interfaz

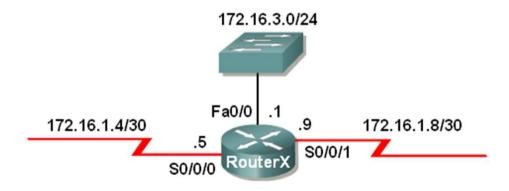
Serial0/0/0

Ruta/Interfaz


FastEthernet0/0

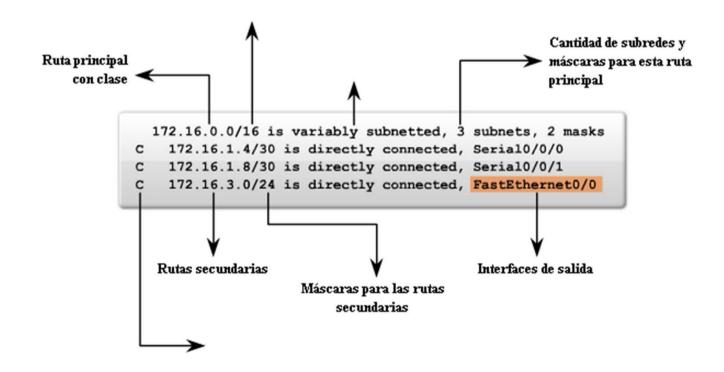
Ruta final

Ruta final


 El diagrama ilustra 2 redes secundarias que pertenecen a la ruta principal 172.16.0.0 / 24

 En redes classless, las rutas secundarias no tienen que compartir la misma máscara de subred

Rutas principales y secundarias con VLSM



Rutas primarias y secundarias: redes classless

Tipo de red	Se muestra la máscara classful de la ruta principal	El término variably subnetted se ve en la ruta principal de la tabla de enrutamiento	Incluye el número de las diferentes máscaras de las rutas secundarias	La máscara de subred está incluida en cada entrada de ruta secundaria
Class- ful	No	No	No	No
Class- less	Sí	Sí	Sí	Sí

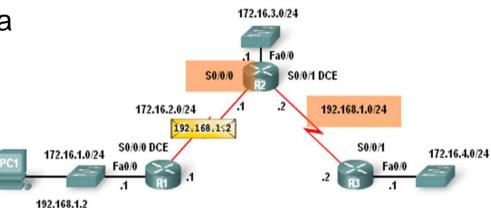
Rutas primarias y secundarias: redes classless

Detalles de la ruta principal y secundaria en un entorno sin clase

- Proceso de búsqueda de rutas
 - Examinar las rutas de nivel 1
 - Si hay una coincidencia con una ruta final de nivel 1 y no es una ruta principal, esta ruta se utiliza para reenviar el paquete
 - El router examina las rutas de nivel 2 (secundarias)
 - Si hay una coincidencia con la ruta secundaria de nivel 2, esa subred se utiliza para reenviar el paquete
 - Si no hay coincidencia, se determina el tipo de comportamiento de enrutamiento
 - El router determina si el comportamiento de enrutamiento es classful o classless
 - Si es classful, el paquete se descarta
 - Si es classless, el router busca la superred de nivel 1 y las rutas por defecto
 - Si hay una coincidencia de superred de nivel 1 o de ruta por defecto, el paquete se reenvía. De lo contrario, se descarta el paquete

- Coincidencia más larga: rutas de red de nivel 1
 - La mejor coincidencia también es conocida como la coincidencia más larga
 - La mejor coincidencia es la que tiene la mayoría de los números de bits más a la izquierda entre la dirección IP de destino y la ruta de la tabla de enrutamiento

La ruta preferida es la de mayor coincidencia


Destino del paquete IP	172.16.0.10	10101100.00010000.00000000.000001010
Ruta 1	172.16.0.0/12	10101100.00010000.00000000.00000000
Ruta 2	172.16.0.0/18	10101100.00010000.00000000.00000000
Ruta 3	172.16.0.0/26	10101100.00010000.00000000.0000000

 Búsqueda de la máscara de subred que se utiliza para determinar la coincidencia más larga

Situación:

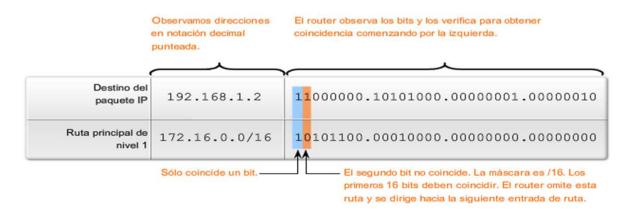
- PC1 hace ping en 192.168.1.2
- El router examina la ruta de nivel 1 para que haya más coincidencia
- Hay una coincidencia entre192.168.1.2 y 192.168.1.0 / 24
- El router reenvía paquetes desde s0/0/0

Ejemplo: Ruta final de nivel 1

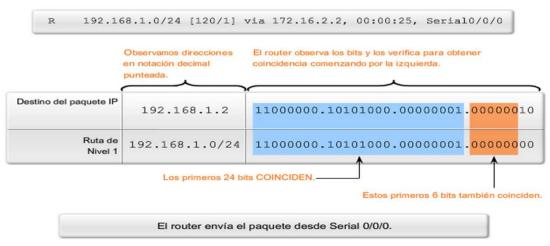
Paso 1: Examine las rutas del nivel 1 para lograr una mejor coincidencia con la dirección de destino del paquete.

```
R1#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

<some output omitted>

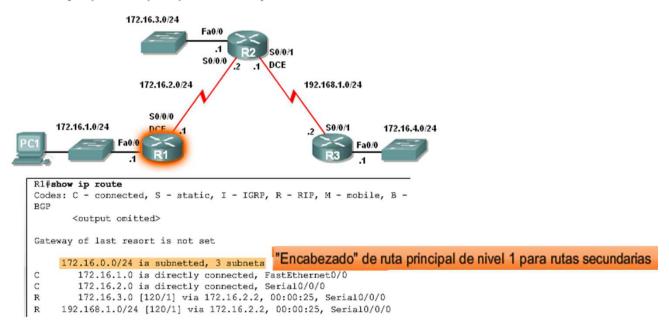

Gateway of last resort is not set

172.16.0.0/24 is subnetted, 3 subnets
C 172.16.1.0 is directly connected, FastEthernet0/0
C 172.16.2.0 is directly connected, Serial0/0/0
R 172.16.3.0 [120/1] via 172.16.2.2, 00:00:25, Serial0/0/0
R 192.168.1.0/24 [120/1] via 172.16.2.2, 00:00:25, Serial0/0/0
```

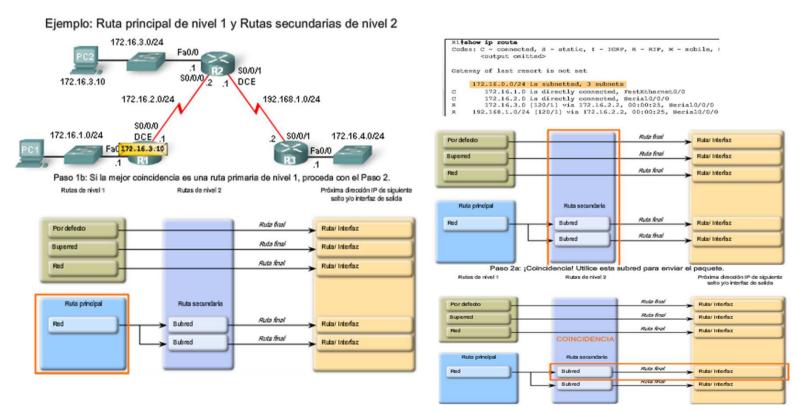


- Proceso de coincidencia
 - En primer lugar, debe haber coincidencia entre la ruta principal y la IP de destino
 - Si hay una coincidencia, se intenta buscar una coincidencia entre la IP de destino y la ruta secundaria

Ruta primaria de nivel 1 172.16.0.0/16

- Búsqueda de una coincidencia entre la dirección IP de destino del paquete y la próxima ruta de la tabla de enrutamiento
 - La figura muestra una coincidencia entre la IP de destino de 192.168.1.0 y la IP de nivel 1 de 192.168.1.0 / 24. Luego, el router reenvía el paquete desde s0/0/0

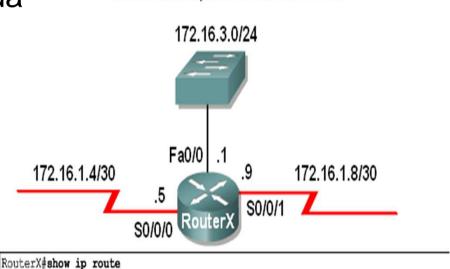


Ruta final de Nivel 1 192.168.1.0/24


- Rutas principales de nivel 1 y rutas secundarias de nivel 2
- Antes de que se examinen las rutas secundarias de nivel 2
 - Debe haber una coincidencia entre la ruta principal classful de nivel 1 y la dirección IP de destino

Ejemplo: Ruta principal de nivel 1 y Rutas secundarias de nivel 2

- Después de que se realice la coincidencia con una ruta principal, se examinarán las rutas secundarias de nivel 2 para una coincidencia
 - El proceso de búsqueda de rutas busca una ruta secundaria con una coincidencia con la IP de destino


- Cómo el router busca una coincidencia con una de las rutas secundarias de nivel 2
 - Primero, el router examina las rutas primarias para encontrar una coincidencia
 - Si hay una coincidencia:
 - Se examinan las rutas secundarias
 - La ruta secundaria elegida es la que tiene la coincidencia más larga

Ejemplo: Ruta principal de nivel 1 y Rutas secundarias de nivel 2

	172.16.3.10	10101100 00010000 00000011 00001010
Ruta principal de nivel	172.16.0.0/16	10101100 00010000 00000000 00000000
Ruta secundaria de nivel 2	172.16.1.0/24	10101100 00010000 0000001 00000000
Ruta secundaria de nivel 2	172.16.2.0/24	10101100 00010000 00000010 00000000
Ruta secundaria de nivel 2	172.16.3.0/24	10101100 00010000 00000011 00000000

- Ejemplo: Proceso de búsqueda de rutas con VLSM
 - El uso de VLSM no cambia el proceso de búsqueda
 - Si hay una coincidencia entre la dirección IP de destino y la ruta primaria de nivel 1
 - Se buscarán rutas secundarias de nivel 2

Proceso de búsqueda de ruta con VLSM

```
Coutput omitted>
Gateway of last resort is not set

172.16.0.0/16 is variably subnetted, 3 subnets, 2 masks
C 172.16.1.4/30 is directly connected, Serial0/0/0
C 172.16.1.8/30 is directly connected, Serial0/0/1
C 172.16.3.0/24 is directly connected, FastEthernet0/0
RouterX#
```

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

Protocolos de enrutamiento classful y classless

Afectan la forma en que se puebla

 La tabla de enrutamiento. Comportamientos de enrutamiento classful y classless

Determina cómo se **busca** una tabla de enrutamiento después de que se completa

Comparación entre protocolos de enrutamiento y comportamientos de enrutamiento

Origen del enrutamiento Redes conectadas directamente Rutas estáticas Protocolos de enrutamiento con clase RIPv1 IGRP Protocolos de enrutamiento sin clase RIPv2 EIGRP OSPF IS-IS

- Los orígenes de enrutamiento (incluyendo los protocolos) se utilizan para construir la tabla de enrutamiento.
- Pueden utilizarse múltiples orígenes y protocolos de enrutamiento.

Comportamientos de enrutamiento

Con clase

no ip classless

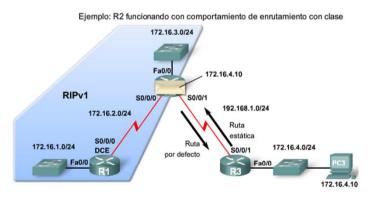
IP sin clase

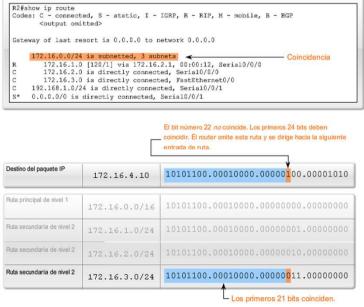
ip classless

- Los comportamientos de enrutamiento se utilizan para encontrar información en la tabla de enrutamiento.
- Sólo puede utilizarse un único comportamiento de enrutamiento.

- Comportamiento de enrutamiento classful: no ip classless
- ¿Qué sucede si no hay coincidencia de la ruta principal con las rutas secundarias de nivel 2?
 - El router debe determinar si el comportamiento de enrutamiento es classless o classful
 - Si el router está utilizando un comportamiento de

enrutamiento classful


 El proceso de búsqueda finaliza y el paquete se descarta


Paso 3a: Comportamiento de enrutamiento con clase: Descarte el paquete Próxima dirección IP de Rutas de nivel 2 Rutas de nivel 1 siguiente salto y/o interfaz de salida Ruta final Por defecto Ruta/Interfaz Ruta final Superred Ruta/Interfaz Ruta final Red Ruta/Interfaz Descarte el paquete Ruta principal Ruta secundaria Ruta final Red Subred Ruta/Interfaz Ruta final Subred Ruta/Interfaz

Proceso de búsqueda de tabla de ruta

- Comportamiento de enrutamiento classful: proceso de búsqueda
- Ejemplo del comportamiento de enrutamiento classful en efecto y de por qué el router descarta el paquete
 - La máscara de subred de destino es /24, y ninguna de las rutas secundarias restantes coinciden con los primeros 24 bits. Esto significa que el paquete se descarta

- Comportamiento de enrutamiento classful: proceso de búsqueda
- El motivo por el que el router no buscará más allá de las rutas secundarias
 - Originalmente, las redes eran todas classful
 - Esto significaba que una organización podía dividir en subredes una dirección de red y "dar a conocer" a todos los routers de la organización la división en subredes
 - Por lo tanto, si la subred no estaba en la tabla de enrutamiento, la subred no existía y el paquete se descartaba

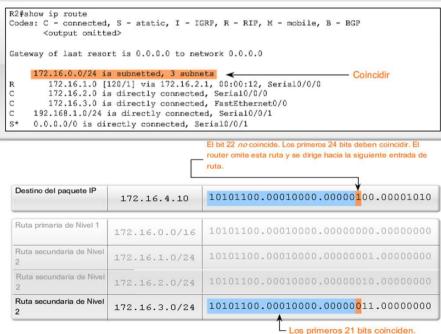
- ip classless
- A partir de IOS 11.3, ip classless estaba configurada por defecto
- El comportamiento de enrutamiento classless funciona para
 - Redes no contiguas

У

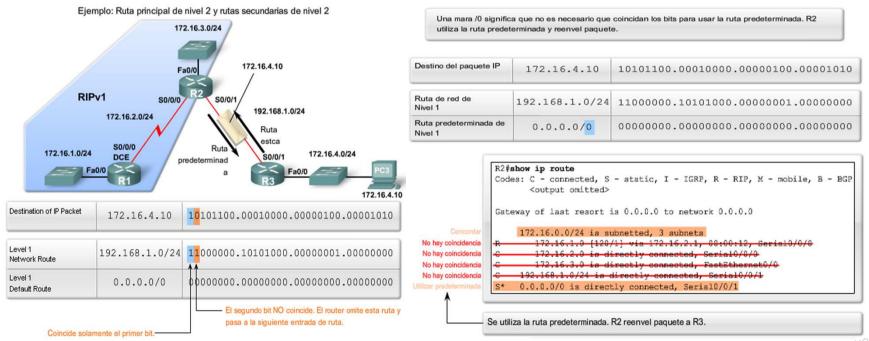
- Superredes CIDR

- Comportamiento de enrutamiento classless: ip classless
- La ruta realiza el proceso de búsqueda cuando ip classless está en uso
 - Si el comportamiento de enrutamiento classless está funcionando
 - Examina las rutas de nivel 1
 - Las rutas de superredes se verifican primero
 - Si hay una coincidencia, el paquete se reenvía
 - Las rutas por defecto se verifican en segundo lugar


Si no hay coincidencia ni ruta por defecto


el paquete se descarta

- Comportamiento de enrutamiento classless: proceso de búsqueda
- El router comienza el proceso de búsqueda cuando encuentra una coincidencia entre la IP de destino y una ruta principal


Una vez que encuentra la coincidencia mencionada, se realiza una búsqueda de la ruta secundaria

- Comportamiento de enrutamiento classless: proceso de búsqueda
- Si no se encuentra una coincidencia en las rutas secundarias de la diapositiva anterior,

el router continúa la búsqueda en la tabla de enrutamiento de una coincidencia con menos bits

- Classful versus classless: comportamiento de enrutamiento
 - Se recomienda utilizar el comportamiento de enrutamiento classless
 - Motivo: Para que la superred y las rutas por defecto se puedan utilizar cuando sea necesario

Resumen

Contenido/estructura de una tabla de enrutamiento

- Entradas de las tablas de enrutamiento
 - Redes conectadas directamente
 - Ruta estática
 - Protocolos de enrutamiento dinámico
- Las tablas de enrutamiento son jerárquicas
 - Ruta de nivel 1

Tiene una máscara de subred menor o igual que la máscara de subred classful de la dirección de red

- Ruta de nivel 2

Éstas son subredes de una dirección de red

Resumen

Proceso de búsqueda de la tabla de enrutamiento

- Comienza con la examinación de las rutas de nivel 1 para una mejor coincidencia con la IP de destino del paquete
 - Si la mejor coincidencia es igual a la ruta final:
 - Se reenvía el paquete
 - Se examina una ruta principal

Si la ruta principal y la IP de destino coinciden, se examinan las rutas de nivel 2 (secundarias)

- Examinación de la ruta de nivel 2
- Si se encuentra una coincidencia entre la IP de destino y la ruta secundaria: Se reenvía el paquete
- Si el router está utilizando un comportamiento de enrutamiento classful: El paquete se descarta
- Si el router está utilizando un comportamiento de enrutamiento classless:
 El router realiza la búsqueda en la superred de nivel 1 y las rutas por defecto de una coincidencia
- Si encuentra una coincidencia, el paquete se reenvía. De lo contrario,
- El paquete se descarta

Resumen

Comportamientos de enrutamiento

- Esto se refiere a cómo se realiza una búsqueda en una tabla de enrutamiento

Comportamiento de enrutamiento classful

- Indicado por el uso de un comando no ip classless
- El router no buscará más allá de las rutas secundarias una coincidencia menor

Comportamiento de enrutamiento classless

- Indicado por el uso de un comando ip classless
- El router buscará más allá de las rutas secundarias una coincidencia menor

